
CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 1

CPU How It WorksCPU How It Works

22

Generic Block DiagramGeneric Block Diagram

CPU

Memory Input Output

Address Bus

Data Bus

HardwareHardware

The Von Neumann The Von Neumann
ArchitectureArchitecture

Von NeumannVon Neumann
ArchitectureArchitecture

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 2

55

Designing ComputersDesigning Computers

All computers more or less based on the same All computers more or less based on the same
basic design, the Von Neumann Architecture!basic design, the Von Neumann Architecture!

66

The Von Neumann ArchitectureThe Von Neumann Architecture

Model for designing and building computers, based Model for designing and building computers, based
on the following three characteristics:on the following three characteristics:

1)1) The computer consists of four main subThe computer consists of four main sub--systems:systems:
MemoryMemory
ALU (Arithmetic/Logic Unit)ALU (Arithmetic/Logic Unit)
Control UnitControl Unit
Input/Output System (I/O)Input/Output System (I/O)

2)2) Program is stored in memory during execution.Program is stored in memory during execution.
3)3) Program instructions are executed sequentially.Program instructions are executed sequentially.

77

The Von Neumann The Von Neumann
ArchitectureArchitecture

Memory

Processor (CPU)

Input-Output
Control Unit

ALU
Store data and programStore data and program

Execute programExecute program

Do arithmetic/logic operationsDo arithmetic/logic operations
requested by programrequested by program

Communicate withCommunicate with
"outside world", e.g. "outside world", e.g.
•• ScreenScreen
•• KeyboardKeyboard
•• Storage devices Storage devices
••

Bus

88

Memory SubsystemMemory Subsystem
Memory, also called Memory, also called RAMRAM ((RRandom andom AAccess ccess MMemory), emory),

Consists of many memory cells (storage units) of a fixed Consists of many memory cells (storage units) of a fixed
size. size.
Each cell has an address associated with it: 0, 1, …Each cell has an address associated with it: 0, 1, …
All accesses to memory are to a specified address.All accesses to memory are to a specified address.
A cell is the minimum unit of access (fetch/store a A cell is the minimum unit of access (fetch/store a
complete cell).complete cell).
The time it takes to fetch/store a cell is the same for all The time it takes to fetch/store a cell is the same for all
cells.cells.

When the computer is running, bothWhen the computer is running, both
ProgramProgram
Data (variables) Data (variables) are stored in the memory.are stored in the memory.

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 3

99

Memory Size / SpeedMemory Size / Speed
Typical memory in a personal computer (PC):Typical memory in a personal computer (PC):

64MB 64MB -- 256MB256MB

Memory sizes:Memory sizes:
Kilobyte (KB)Kilobyte (KB) = 2= 210 10 =1,024 bytes ~ 1 thousand=1,024 bytes ~ 1 thousand
Megabyte(MB)Megabyte(MB) = 2= 22020 =1,048,576 bytes ~ 1 million=1,048,576 bytes ~ 1 million
Gigabyte(GB)Gigabyte(GB) = 2= 23030 = 1,073,741,824 bytes ~ 1 = 1,073,741,824 bytes ~ 1
billionbillion

Memory Access Time (read from/ write to Memory Access Time (read from/ write to
memory)memory)

5050--75 nanoseconds (1 nsec. = 0.000000001 sec.)75 nanoseconds (1 nsec. = 0.000000001 sec.)

RAM isRAM is
volatile (can only store when power is on)volatile (can only store when power is on)
relatively expensiverelatively expensive 1010

Operations on Memory Operations on Memory
Fetch (address):Fetch (address):

Fetch a copy of the content of memory cell with the Fetch a copy of the content of memory cell with the
specified address.specified address.
NonNon--destructive, copies value in memory cell.destructive, copies value in memory cell.

Store (address, value):Store (address, value):
Store the specified value into the memory cell specified Store the specified value into the memory cell specified
by address.by address.
Destructive, overwrites the previous value of the Destructive, overwrites the previous value of the
memory cell.memory cell.

The memory system is interfaced via:The memory system is interfaced via:
Memory Address Register (MAR)Memory Address Register (MAR)
Memory Data Register (MDR)Memory Data Register (MDR)
Fetch/Store signalFetch/Store signal

1111

Structure of the Memory Structure of the Memory
SubsystemSubsystem

Fetch(address)Fetch(address)
Load address into MAR.Load address into MAR.
Decode the address in MAR.Decode the address in MAR.
Copy the content of memory Copy the content of memory
cell with specified address into cell with specified address into
MDR.MDR.

Store(address, value)Store(address, value)
Load the address into MAR.Load the address into MAR.
Load the value into MDR.Load the value into MDR.
Decode the address in MARDecode the address in MAR
Copy the content of MDR into Copy the content of MDR into
memory cell with the specified memory cell with the specified
address.address.

MAR MDR

...

Memory
decoder
circuit

Fetch/Store
controller

F/S

1212

Input/Output SubsystemInput/Output Subsystem
Handles devices that allow the computer system to:Handles devices that allow the computer system to:

Communicate and interact with the outside worldCommunicate and interact with the outside world
Screen, keyboard, printer, ...Screen, keyboard, printer, ...

Store information (massStore information (mass--storage) storage)
HardHard--drives, floppies, CD, tapes, …drives, floppies, CD, tapes, …

MassMass--Storage Device Access Methods:Storage Device Access Methods:
Direct Access Storage Devices (DASDs)Direct Access Storage Devices (DASDs)

HardHard--drives, floppydrives, floppy--disks, CDdisks, CD--ROMs, ...ROMs, ...
Sequential Access Storage Devices (SASDs)Sequential Access Storage Devices (SASDs)

Tapes (for example, used as backup devices)Tapes (for example, used as backup devices)

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 4

1313

I/O ControllersI/O Controllers
Speed of I/O devices is slow compared to RAMSpeed of I/O devices is slow compared to RAM

RAM ~ 50 nsec.RAM ~ 50 nsec.
HardHard--Drive ~ 10msec. = (10,000,000 nsec)Drive ~ 10msec. = (10,000,000 nsec)

Solution: Solution:
I/O Controller, a special purpose processor:I/O Controller, a special purpose processor:

Has a small memory buffer, and a control logic to Has a small memory buffer, and a control logic to
control I/O device (e.g. move disk arm).control I/O device (e.g. move disk arm).
Sends an interrupt signal to CPU when done Sends an interrupt signal to CPU when done
read/write.read/write.

Data transferred between RAM and memory buffer.Data transferred between RAM and memory buffer.
Processor free to do something else while I/O Processor free to do something else while I/O
controller reads/writes data from/to device intocontroller reads/writes data from/to device into I/O I/O
buffer.buffer.

1414

I/O controller

Structure of the I/O Structure of the I/O
SubsystemSubsystem

I/O Buffer

Control/Logic

I/O device

Data from/to memory
Interrupt signal (to processor)

1515

The ALU SubsystemThe ALU Subsystem
The ALU (Arithmetic/Logic Unit) performsThe ALU (Arithmetic/Logic Unit) performs

mathematical operations (+, mathematical operations (+, --, x, /, …), x, /, …)
logic operations (=, <, >, and, or, not, ...)logic operations (=, <, >, and, or, not, ...)

In today's computers integrated into the CPUIn today's computers integrated into the CPU
Consists of:Consists of:

Circuits to do the arithmetic/logic operations. Circuits to do the arithmetic/logic operations.
Registers (fast storage units) to store intermediate Registers (fast storage units) to store intermediate
computational results.computational results.
Bus that connects the two.Bus that connects the two.

1616

Structure of the ALUStructure of the ALU
Registers:Registers:

Very fast local memory cells, Very fast local memory cells,
that store operands of that store operands of
operations and intermediate operations and intermediate
results.results.
CCRCCR (condition code register), a (condition code register), a
special purpose register that special purpose register that
stores the result of <, = , > stores the result of <, = , >
operationsoperations

ALU circuitry:ALU circuitry:
Contains an array of circuits to Contains an array of circuits to
do mathematical/logic do mathematical/logic
operations.operations.

Bus:Bus:
Data path interconnecting the Data path interconnecting the
registers to the ALU circuitry.registers to the ALU circuitry.

ALU circuitry

GT EQ LT

R0
R1
R2

Rn

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 5

1717

The Control UnitThe Control Unit
Program is stored in memory Program is stored in memory

as machine language instructions, in binaryas machine language instructions, in binary
The task of the The task of the control unitcontrol unit is to execute programs by is to execute programs by
repeatedly:repeatedly:

FetchFetch from memory the next instruction to be from memory the next instruction to be
executed.executed.
DecodeDecode it, that is, determine what is to be done.it, that is, determine what is to be done.
ExecuteExecute it by issuing the appropriate signals to the it by issuing the appropriate signals to the
ALU, memory, and I/O subsystems.ALU, memory, and I/O subsystems.
Continues until the HALT instructionContinues until the HALT instruction

1818

Machine Language InstructionsMachine Language Instructions
A machine language instruction consists of:A machine language instruction consists of:

Operation codeOperation code, telling which operation to perform, telling which operation to perform
Address field(s)Address field(s), telling the memory addresses of , telling the memory addresses of
the values on which the operation works.the values on which the operation works.

Example: ADD X, Y (Add content of memory locations Example: ADD X, Y (Add content of memory locations
X and Y, and store back in memory location Y).X and Y, and store back in memory location Y).
Assume: opcode for ADD is 9, and addresses X=99, Assume: opcode for ADD is 9, and addresses X=99,
Y=100Y=100

00001001 0000000001100011 0000000001100100
Opcode (8 bits)Opcode (8 bits) Address 1 (16 bits)Address 1 (16 bits) Address 2 (16 bits)Address 2 (16 bits)

1919

How does this all work How does this all work
together?together?

Program Execution:Program Execution:
PC is set to the address where the first PC is set to the address where the first
program instruction is stored in memory.program instruction is stored in memory.
Repeat until HALT instruction or fatal errorRepeat until HALT instruction or fatal error

Fetch instructionFetch instruction
Decode instructionDecode instruction
Execute instructionExecute instruction

End of loopEnd of loop

2020

Program Execution (cont.)Program Execution (cont.)
Fetch phaseFetch phase

PC PC ----> MAR> MAR (put address in PC into MAR)(put address in PC into MAR)
Fetch signalFetch signal (signal memory to fetch value into (signal memory to fetch value into
MDR)MDR)
MDR MDR ----> IR> IR (move value to Instruction Register)(move value to Instruction Register)
PC + 1 PC + 1 ----> PC > PC (Increase address in program counter)(Increase address in program counter)

Decode PhaseDecode Phase
IR IR --> Instruction decoder > Instruction decoder (decode instruction in IR)(decode instruction in IR)

Instruction decoder will then generate the Instruction decoder will then generate the
signals to activate the circuitry to carry out signals to activate the circuitry to carry out
the instructionthe instruction

CMPUT101 Introduction to Computing - Spring 2001

Chapter 5 The Von Neumann Architecture 6

2121

Program Execution (cont.)Program Execution (cont.)

Execute Phase Execute Phase
Differs from one instruction to the next.Differs from one instruction to the next.

Example:Example:
LOAD X (load value in addr. X into register)LOAD X (load value in addr. X into register)

IR_address IR_address --> MAR> MAR
Fetch signalFetch signal
MDR MDR ----> R> R

ADD X ADD X
left as an exerciseleft as an exercise

